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Abstract

In an earlier study, Puente and Obregón [Water Resour. Res. 32(1996)2825] reported on the usage of a deterministic fractal–

multifractal (FM) methodology to faithfully describe an 8.3 h high-resolution rainfall time series in Boston, gathered every 15 s

and made of 1990 points, as the derived distribution of a classical multifractal measure via a fractal interpolating function. This

work further studies the robustness of the FM methodology via an exhaustive sensitivity analysis aimed at obtaining even better

FM descriptions for the Boston storm. This is carried out by varying a host of pertinent attributes that include usage of: (a)

alternative objective functions for the inverse problem based on cumulative distributions of the records and of their derivatives;

(b) a genetic algorithm in order to find the best FM parameters; (c) fractal interpolating functions passing by 3, 4 and 5 points,

considering all relevant parameter-combination cases separately; and (d) two scales of aggregation, i.e. records with 199 and

1990 bins. The analysis indicates that previous results may indeed be improved when cumulative distributions of the records,

rather than the records themselves, are employed in the FM parameter search, especially for representations based on 4 and 5

interpolating points and at the highest data resolution.

q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Modeling the structure of temporal rainfall has

been one of the most important research areas in

hydrology over the past several decades, resulting in a

variety of sophisticated models. Most current models

are based on either stochastic (time series) methods or

combinations of physically based representations with

stochastic methods. Although significant success has

been attained using these methods, the (stochastic)

models possess an important limitation in that they are

constructed to preserve only some relevant statistical

attributes of the rainfall records, rather than their

complete geometric structure. These models also do

not consider the effects of small distortions as

identified in chaotic studies (Rodrı́guez-Iturbe et al.,

1989; Berndtsson et al., 1994; Puente and Obregón,

1996; Sivakumar et al., 1999, 2001).

Puente (1992, 1994) introduced a fractal–multi-

fractal (FM) approach for modeling complex temporal

or spatial sets, as produced by non-linear systems. The

idea behind this methodology is to think of the intricate
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natural patterns as derived distributions of simple

multifractal measures via fractal interpolating func-

tions. An important trait of the FM method is that it is

entirely deterministic and, hence, does not require any

statistical assumptions, such as stationarity or ergodi-

city or a minimal record length. The basis for

developing such an approach is the fact that seemingly

irregular behavior can indeed be the result of simple

deterministic systems influenced by a few non-linear

interdependent variables (Lorenz, 1963; Meneveau

and Sreenivasan, 1987).

The FM approach was successfully employed by

Puente and Obregón (1996) to model a high-

resolution storm (every 15 s for about 8.3 h) observed

in Boston on October 25, 1980 (Rodrı́guez-Iturbe

et al., 1989). A detailed comparison of the real and

FM fitted rainfall time series revealed that the

geometric procedure not only captured the timing

and size of the largest peak present in the records but

also preserved the overall appearance of the set,

including secondary peaks and small noisy fluctu-

ations. Such FM representation was reached mini-

mizing a weighted sum of squared differences

between attributes of the real and FM outcomes of

equal length, searching FM parameter space using in

succession the multidimensional simplex method

(Press et al., 1989), simulated annealing (Otten and

van Ginneken, 1989), and sequential quadratic

programming (Zhou and Tits, 1993).

The ‘optimal’ solution reported preserved, as

explicitly accounted for in the objective function, a

list of statistical attributes, as follows: (1) the first 10

central and modal moments of the records when seen

from the time axis; (2) the first 10 central moments of

the records when seen from the intensity axis; and (3)

the mass exponents function of the data (e.g. its

multiscaling signature, see Puente and Obregón

(1996)). At the end, the FM representation also

captured a host of attributes not explicitly accounted

for in the optimization exercise, such as: (1) the

higher-order moments along both the time and

intensity axes; (2) the overall shape of the auto-

correlation and histogram functions of the records;

(3) the scaling properties present in the power

spectrum of the records; and (4) the possibly chaotic

nature of the set of observations, as customarily done

in non-linear dynamics studies (Sivakumar et al.,

1999, 2001).

The goal of the present study is to further study the

robustness of the FM approach and, in particular, to

investigate whether even better approximations for

the Boston storm may be obtained. This is done by

performing a sensitivity analysis that accounts for the

way one may estimate the FM parameters. These

results are of relevance in future applications of the

FM approach, for the parameter estimation exercise is

both time consuming and non-trivial. The organiz-

ation of this article is as follows. In Section 2, the FM

approach is reviewed. Then, the detailed sensitivity

analysis for the Boston set and the results thus

obtained are reported. The article ends with its

conclusions.

2. The fractal–multifractal approach

Fig. 1 shows on its right hand side the Boston

storm under consideration, and the best approxi-

mation reported earlier via the FM approach next to

it, i.e. dy (Puente and Obregón, 1996). As is seen,

such a set is constructed transforming a multinomial

multifractal measure, dx (bottom left) (Feder, 1988),

via a fractal interpolating function that passes by five

points, as indicated by the solid dots, f (Barnsley,

1988). Mathematically, dy is defined employing a

derived distributions approach, considering all rel-

evant events in x and adding their contributions, i.e.

dyðBÞ ¼ dx{x : f ðxÞ [ B}; for all Borel subsets B on

y, and hence can be interpreted as a weighted

projection of the function f, with the weights given

by the parent measure dx.

For a given set of N þ 1 points in the plane

{ðx0; y0Þ; ðx1; y1Þ;…; ðxN ; yNÞ; x0 , x1 , … , xN};

measures dx and dy may be calculated iterating a

suitable set of N contractile affine mappings (accord-

ing to an appropriate set of N weights pn) and

counting over a desired number of bins (the

resolution of the records to be fitted) over x and y

(Puente, 1994). Such mappings have the specific

form

wn

x

y

 !
¼

an 0

cn dn

 !
x

y

 !
þ

en

fn

 !
; ð1Þ

where an; cn; en; and fn are related to the interpolating

points and the free scaling parameters dn;0 # ldnl , 1;
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via the conditions

wn

x0

y0

 !
¼

xn21

yn21

 !
ð2Þ

and

wn

xN

yN

 !
¼

xn

yn

 !
ð3Þ

for n ¼ 1; 2;…;N: It turns out that the graph of a

fractal interpolating function may be fractal, as its

implied dimension Df is: (a) 1, if
P
ldnl # 1; and

(b) $1, from
P
ldnla

Df21
n ¼ 1; if

P
ldnl . 1 (Barns-

ley, 1988). The FM representation shown in Fig. 1 is

found iterating four affine mappings (according to

four weights that yield the intermittencies of the

parent measure) and hence is based on the 13

independent parameters (6 coordinates, 4 scalings, 3

independent iteration weights) included in the first

row of Table 1. That leads to a fractal interpolating

function whose graph has a dimension of 1.51.

By varying the parameters of f and dx, i.e. ðxn; ynÞ;

dn and pn; and by allowing projections to be found at

directions other than y, i.e. at angles u other than 1808,

a large variety of derived measures may be obtained.

Overall, the following trends are found for the derived

measures dy (Puente, 1994). When Df is close to one,

they are typically multifractal and they have the

desirable feature (as seen in Fig. 1) of being neither

self-similar nor self-affine. As Df increases from 1 to

2, the measures become smooth and gradually acquire

a density. In the limit, when Df tends to 2, dy becomes

Gaussian, for every parent measure dx (Puente, 1992).

Given that multinomial multifractals have been

found of relevance in the study of intermittent natural

phenomena (Meneveau and Sreenivasan, 1987; Sree-

nivasan, 1991), the FM derived measures may be

given a quasi-physical interpretation, i.e. they could

be thought of as ‘projections’ of turbulence related

Fig. 1. The fractal–multifractal framework in two dimensions. A multifractal measure dx is transformed via a fractal interpolating function f into

a derived measure dy. The set on the upper right corresponds to a storm in Boston.
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phenomena. At the end, the FM approach interprets

the (non-negative) data at hand (assumed herein to be

noise free) as a normalized distribution, a probability

measure, that is then encoded, as parsimoniously as

possible, via a parent multifractal measure and a

fractal interpolating function.

A relevant distinction between this approach and

other state-of-the-art multifractal methods is that

instead of concentrating on the statistics of the actual

realization(s) (Lovejoy and Schertzer, 1990; Tessier

et al., 1993), the FM methodology focuses on the

whole geometry of the geophysical patterns, i.e.

instead of concentrating on modeling or ‘characteriz-

ing’ the distribution of the data or relevant attributes,

such as moments, the FM approach uses derived

distributions to describe the data itself.

As there is no simple analytical formula that gives

the derived measure, dy, nor its most common statistics,

in terms of the FM parameters, the inverse problem for

finding the best FM representation requires a numerical

solution. As a result, this exercise becomes non-trivial

due to: (1) the large number of combinations of

parameters (coordinates, scalings, intermittencies and

projection angle) that is 6, 10, and 14 for 3, 4, and 5

interpolating points (once x0; y0; y1; and xN are fixed);

and (2) the practically infinite number of derived

measures that may be generated, many of them sharing

common statistical and multifractal features.

3. Sensitivity analysis for the Boston storm

As it has been our experience that the FM

representations depend on a host of conditions (i.e.

objective function, searching procedure, initial par-

ameters, and data resolution) and as it has been our

belief that even better FM descriptions could be

obtained for the Boston storm, this section presents an

exhaustive sensitivity analysis aimed at understanding

the implied inverse problem better. To this effect, the

analysis considers: (a) objective functions based on

cumulative distributions of the records and their

derivatives, that turn out to give better performance

than the one used earlier based on moments and mass

exponents (Puente and Obregón, 1996) or those based

on the records themselves that lead to searches

dominated by the largest peak in the storm; (b) FM

representations calculated via a genetic algorithm

(Duan et al., 1992) that improves the objective

function faster than the optimization procedures

used before (e.g. simulated annealing as in Fig. 1);

(c) all possible sign combinations on the scalings dn

for 3, 4 and 5 interpolating points (i.e. leading to, in

order, 4, 8, and 16 separate cases, see Eq. (1)) to avoid

searches that travel from a quadrant to another and to

more fully search the FM parameter space; and (d)

two different scales (resolutions) for the records (199

and 1990 bins) to study if the faster calculations at

Table 1

Parameters for FM storms in Fig. 4. Values not shown below are set as follows: x0 ¼ 0; y0 ¼ 0; y1 ¼ 1; and xN ¼ 1; where N is the number of

affine mappings

Storm Coordinates Projection

angle u (8)

x1 x2 x3 y2 y3 y4

dyV WRR96 0.215 0.382 0.815 0.763 1.596 2.756 180.0

dy p V WRR96 0.198 0.485 0.823 0.744 1.508 2.505 195.6

dy p V 0.474 0.527 0.602 26.250 8.644 25.954 331.3

dy p IV 0.322 0.826 1.125 2.585 59.0

dy p III 0.492 20.175 190.5

Scalings Intermittencies

d1 d2 d3 d4 p1 p2 p3 p4

dyV WRR96 20.747 20.082 0.482 0.744 0.331 0.161 0.135 0.374

dy p V WRR96 20.687 20.032 0.416 0.764 0.348 0.142 0.142 0.368

dy p V 20.052 0.328 0.401 20.821 0.160 0.082 0.161 0.597

dy p IV 20.889 0.235 20.229 0.516 0.328 0.156

dy p III 20.954 20.264 0.494 0.506
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the aggregated scale, that lower the CPU search time

from 3 days to less than one on a DEC 250

workstation, may be sufficient to model the actual

records.

For reference, the attributes included in the

optimization procedure (also included in the figures

herein) are as follows:

(a) Sum of square differences (over time) between

cumulative distributions of the Boston and FM

sets ð
P
D2Þ:

(b) Sum of square differences (over time) between

cumulative distributions of normalized absolute

one-lag derivatives of the Boston and FM sets

ð
P
DdÞ:

(c) Sum of (a) and (b), that is D ¼
P
D2 þ

P
Dd :

The following qualifiers, not explicitly considered

during the optimization exercise, are also used to

qualify the goodness of an optimal solution, as

presented in the figures:

(a) Maximum absolute difference (over time)

between cumulative distributions of the Boston

and FM sets (D ).

(b) Distance from zero to the maximum of a

normalized set (S ), i.e. the vertical scale of

non-cumulative records.

(c) Length from beginning to end of a cumulative

distribution (L ), i.e. from (0, 0) to (1, 1) and

belonging to the interval from square root of 2 to

2 that corresponds to uniform and multifractal

measures, respectively.

(d) Total range between a cumulative distribution

and that of the uniform measure, that is R ¼

lRulþ lRdl; where Ru and Rd are the respective

maximum upper and lower differences between

the distributions.

3.1. Results with 199 bins

Fig. 2 includes the best FM representations

obtained using all sign combinations for 3 interpolat-

ing points, when the objective function is based on the

cumulative distributions of the aggregated records

(i.e.
P
D2). As may be seen on the left, comparing

individual frames with the first row containing the

aggregated Boston set, the alternative scaling

combinations (i.e. cases c1–c4) result in various

degrees of approximation (solid lines) of the data’s

cumulative distribution (in gray). Notice that, even

though all cases give objective function values that

may be considered ‘small’ (i.e. less than 0.166 in
P
D2

as in case c1, as compared to typical starting values

greater than 2), the alternative FM cases give rather

poor ‘storms’ (all underestimating the peak magnitude

as given by the quantity S ), indicating that using only

the cumulative distribution of the records does not

provide the desired improvements.

As seen on the right hand portion of Fig. 2, when

the best FM parameters encountered at the 199 bin

scale are used with the actual set of records in Boston

(i.e. at the 1990 resolution), similarly poor trends are

found. Notice that while cumulative distributions

remain very similar, the FM storms vary from those

aggregated at the left, for the smallest resolution

typically results in more intermittent behavior (e.g.

cases c2 and c4).

As the FM measures in Fig. 2 are either smoother

than the original ones (i.e. cases c1, c3, and c4, as

reflected by smaller values of L for both resolutions) or

contain intermittencies not seen in the original sets (i.e.

case c2), these results suggest that additional attributes,

like the record’s derivatives, ought to be included in the

objective function. In this light, Fig. 3 shows what is

found when the aforementioned exercise is repeated

including in the objective function not only the

cumulative distributions of the records but also those

of their (normalized) absolute lag-one derivatives, i.e.

D ¼
P
D2 þ

P
Dd; as defined before.

As may be seen comparing the left hand portions of

Figs. 2 and 3, although the additional attribute

increases
P
D2 (i.e. from 0.166 to 1.184, from 0.090

to 0.108, from 0.023 to 0.365, and from 0.023 to

0.145, for, in order, cases c1–c4), by improving the

performance on the attribute D (i.e. from 20.921 to

3.274, from 9.957 to 0.422, from 3.415 to 0.590, and

from 2.602 to 1.156, for, in order, cases c1–c4) the

new FM measures result in better overall fittings, that

improve the magnitude of the largest peak (i.e. the

attribute S ) and give close agreement on the quantity

L, especially for cases c2 and c3.

As seen on the right hand portion of Fig. 3, when

the best FM parameters minimizing D at the 199 bin

scale are used at the original resolution, the inherited

FM storms exhibit, as in Fig. 2, more intermittency
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than those at the 199 bin scale. This results in fittings

that, while being worse in regards to
P
D2 relative to

the right hand side on Fig. 2, yield better overall

representations. Notice how the major peak is better

approximated for all storms, particularly in case c3

that, in a surprising manner, results in an increase in D

with respect to the same set in Fig. 2 (i.e. from 12.733

to 29.286). Observe how the best fit at the 199 bin

scale, i.e. case c2, turns out not to be the best at the

1990 resolution, for two major spikes spring left and

right of the real peak at such a scale.

Similar results to the ones shown here were also

obtained for all sign combinations that correspond to

FM representations based on 4 and 5 interpolating

points. Overall, the major trends of such optimiz-

ation exercises (not shown) are similar to the ones

just reported. As illustrated comparing Figs. 2 and 3,

the usage of cumulative distributions of the records

and their derivatives resulted in better FM fits than

those found using just the cumulative distributions

of the records, and good representations at the 199

bin scale did not necessarily translate into good fits

at the 1990 resolution, due to the presence of

additional intermittencies. At the end, those alterna-

tive representations captured, with varying degrees

of success, the details present in the Boston storm,

Fig. 2. Storms and cumulative distributions for 199 bins (left) and 1990 bins (right). The Boston records (top) are followed by FM fitted storms

corresponding to sign combinations of scalings d1 and d2 for a fractal function that passes by 3 interpolating points, c1: þ þ , c2: þ 2 , c3: 2 þ ,

c4: 2 2 .
P
D2 is minimized at the 199 bin scale (see text for details).
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and the addition of interpolating points typically

resulted in improved behavior. For illustration, for

the low resolution records (199 bin scale), D took on

values that ranged from 0.42 to 3.27 (left portion of

Fig. 3), from 0.21 to 3.6, and from 0.21 to 1.32, for

3, 4, and 5 interpolating points, indicating that

having more parameters yields, in general, better

FM outcomes. The ‘best’ FM sets thus obtained, for

4 and 5 interpolating points (not shown), turned out

to provide, for alternative cases with scalings on

various quadrants, very good fits for the 199 bin

Boston storm.

3.2. Results with 1990 data points

As good FM results from the lower resolution do

not necessarily translate into good FM results at the

higher resolution, this section presents what is found

when the parameter search is repeated at the 1990 bin

scale, minimizing D starting the procedure at the best

FM values encountered at the 199 resolution (i.e. the

best sign combination case on the dn’s), following a

more computationally intensive search, that gives the

optimal parameters included in Table 1. For compari-

son, Fig. 4 includes the following frames (from top

Fig. 3. Storms and cumulative distributions for 199 bins (left) and 1990 bins (right). The Boston records (top) are followed by FM fitted storms

corresponding to sign combinations of scalings d1 and d2 for a fractal function that passes by 3 interpolating points, c1: þ þ , c2: þ 2 , c3: 2 þ ,

c4: 2 2 . D ¼
P
D2 þ

P
Dd is minimized at the 199 bin scale (see text for details).
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to bottom): (a) the Boston records at both resolutions;

(b) the best FM fit via a fractal function passing by 5

points, as found via moments and mass exponents and

as previously reported in Fig. 1 (dyV WRR96), i.e.

Puente and Obregón (1996); (c) the best FM fit via

a fractal function passing by 5 points when dyV

WRR96 parameters serve as a starting point in order

to minimize D via the genetic algorithm (dy p V

WRR96); and (d) in order, the best FM fits obtained

starting at the best parameter values from the low

Fig. 4. Storms and cumulative distributions for 199 bins (left) and 1990 bins (right). From top to bottom: the Boston records, the best FM fit from

moments and mass exponents (after Puente and Obregón (1996)) (dyV WRR96), the best FM representation obtained starting at the FM

parameters of dyV WRR96 (dy p V WRR96), and the best FM fits generated via fractal functions passing by 5, 4, and 3 interpolating points (dy p

V, dy p IV, and dy p III), starting with best parameters for the 199 bin scale. D ¼
P
D2 þ

P
Dd is minimized at the 1990 bin scale (see text for

details).
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resolution exercise corresponding to fractal functions

passing by 5 (dy p V), 4 (dy p IV), and 3 (dy p III)

interpolating points.

As is seen, minimizing D does result in improved

approximations of the Boston storm, for such an

attribute is lowered for all FM optimized measures on

the right of Fig. 4: from 8.32 (Fig. 4, dyV WRR96) to

2.74 (Fig. 4, dy p V WRR96); from 6.75 (not shown in a

graph) to 2.03 (Fig. 4, dy pV); from 7.15 (not shown in a

graph) to1.97 (Fig.4, dy p IV);and from9.64 (Fig. 3, c4)

to 8.35 (Fig. 4, dy p III). Clearly, the FM representations

basedonfractal functionspassingby4or5 interpolating

points yield improved performance over the one based

on 3 points, at both levels of aggregation. Notice that,

while the FM storms corresponding to fractal functions

interpolating 5 points lower the deviations in cumulat-

ive distributions ð
P
D2Þ relative to the results of Puente

and Obregón (1996) (i.e. 0.345 and 0.522 versus 0.999,

as seen in rows 3, 4, and 2 of Fig. 4), the one based on 4

interpolatingpoints is thebest, at leastbyafactorof two,

in regards to deviations on lag-one derivatives ð
P
DdÞ

(i.e. 0.643 versus 1.509, as reported in rows 5 and 4,

respectively). These sets, that nicely capture not only

the texture of the records but also the noticeably

dominant major peak, hence provide better overall

results than those presented in Puente and Obregón

(1996). These derived measures, especially the ones

resulting from 5 points, possess indeed the right amount

of roughness (better than the previous best, especially

from the beginning of the event to the major peak), as

reflected by the closeness in the three attributes S, L, and

R and the lower values of the quantity D, for both levels

of aggregation. Notice that this happens despite the fact

that their FM parameters are rather different (see

Table 1), as reflected by the fractal dimension of the

graphs of their interpolating functions of 1.42, 1.29, and

1.26 for, in order, dy p V WRR96, dy p V, and dy p IV.

In order to illustrate the goodness of the approxi-

mations just presented, Figs. 5 and 6 include other

statistical information not used explicitly in the

optimization search. In consonance with the results

presented in Puente and Obregón (1996), Fig. 5

presents the marginal distribution of the rainfall

records (i.e. its histogram), and a summary of relevant

moments, i.e. central moments in time (Cm), modal

moments in time (Mm), and central moments from

the rainfall intensity axis (Cms), with percentages

indicating deviations of the model results with respect

to the actual data, and Fig. 6 includes the autocorrela-

tion functions, power spectra and multifractal spectra,

for all sets in the right hand side of Fig. 4.

As readily appreciated from Fig. 5, the performance

on all of these attributes (with historical histograms

shown in white) confirms that the ‘optimized storms’

emanating from 4 and 5 points are the best, particularly

the latter. Curiously, but understandably, given the

improved search procedure, the new storms, particu-

larly those obtained via 5 interpolating points, are

found better in regards to Cm, Mm and Cms than the

one presented earlier by Puente and Obregón (1996),

that explicitly optimized such attributes. As seen,

while both FM storms corresponding to 5 interpolating

points give similar fits on the marginal distribution and

also provide similar error values for all the moments of

orders 1 and 2, the FM storm corresponding to 4 points

yields a histogram biased towards small rainfall values

(see Fig. 4, right, dy p IV) and, hence, gives larger

errors in the variance of the records as seen from the

rainfall intensity axis (Cms).

As seen in Fig. 6 (with historical information in

white), the trends just mentioned are maintained also

while considering autocorrelation functions, power

spectra and multifractal spectra (especially the left

portion of this attribute). The two storms based on

fractal functions passing by 5 interpolating points and

the one based on 4 points give indeed fairly accurate

approximations for these attributes, as further visual-

ized by the close agreement in the correlation lengths

defined from a decay of e21; tðe21Þ; and the length to

the first local minimum, tðflmÞ; the power spectrum

scaling exponent, b , and the multifractal spectrum’s

entropy dimension, D1; :

As the agreement in all attributes for the FM sets

related to 4 and 5 interpolating points is certainly

reasonable, one may safely infer that the FM

approach does produce measures that preserve the

most important statistics of the Boston storm, while

providing a parsimonious representation of the whole

set of records. The fact that this is accomplished with

only 14 parameters for the case based on 5

interpolating points, leading to a ‘compression’

ratio of 1990/14 < 142, is certainly encouraging.

This is particularly the case, as the geometric

approach captures even small fluctuations, truly

present or not.
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Fig. 5. Histogram, central (Cm) and modal (Mm) moments in time, and central moments in the intensity axis (Cms) for the storms in Fig. 4

having 1990 points. Percentages indicate deviations of model results with respect to the actual data. All histograms have as horizontal and

vertical scales [0, 0.01] and [0, 188], respectively.
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4. Conclusions

The present study followed the research undertaken

by Puente and Obregón (1996), who reported usage of

a deterministic FM procedure to encode a storm event

in Boston as the derived distribution of a multinomial

multifractal measure via a fractal interpolating

function. In an attempt to study if better FM

representations may be obtained for such an event,

this study presented a detailed sensitivity analysis that

encompassed: (a) using two distinct objective func-

tions based on cumulative distributions of the records

and their lag-one derivatives; (b) performing the

parameter estimation search via a genetic algorithm;

(c) using fractal interpolating functions passing by 3, 4,

and 5 points while considering all possible sign

Fig. 6. Autocorrelation function, power spectrum and multifractal spectrum for the storms in Fig. 4 having 1990 points. These functions have as

horizontal and vertical scales, in order, [0, 500] and [20.3, 1], [0.005, 4] and [0.001, 25] in log–log scale, and [0, 1.75] and [0, 1].
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combinations of the scaling parameters of the FM

affine mappings; and (d) employing the Boston records

at two different levels of aggregation.

While the study revealed that better FM approxi-

mations, based on fractal functions passing by 4 and 5

interpolating points and corresponding to 10 and 14

parameters having markedly distinct parameter values,

could indeed be obtained to improve the previous fit for

the Boston storm, it also showed that it is unescapable

to do the analysis at the records’ resolution, for good

FM approximations of the aggregated data often

translate into unseen intermittencies at the data’s

scale. Despite the improvements, these results suggest

that further work is needed so that the FM method may

perform even better. Amongst the subjects that should

be studied there are: (a) the proper design of an

objective function for the FM search, (b) the appro-

priate definition of an efficient (genetic) algorithm for

the inverse problem, i.e. with suitably defined

probabilities, and (c) the consideration of extensions

of the FM methodology so that other interpolating

functions and parent measures are employed.

As has been illustrated, the results herein confirm

that FM representation may be used to simulate the

overall geometric appearance of complex rainfall

records in a whole and deterministic fashion, via an

algorithm that turns out to be structurally rather simple.

Successful usage of the ideas to other rainfall records

gathered in Iowa City has been accomplished and its

results are reported elsewhere (Obregón et al., 2002).

The results from these studies and others do

suggest that the FM approach may be used as a tool

for the synthetic generation of rainfall sets and do

indicate that such a procedure (or its extensions) may

eventually be used, in light of their inherent

compression of information, as parsimonious means

for archiving data. It is envisioned that relevant

physics may be extracted via the FM representation,

for its parameters, by reflecting the intrinsic geometry,

may be used to discriminate alternative sets under

different climatic and geographic conditions.
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